

IBM Research / Linux Technology Center

Sync-based Replication:

Protocol and OpenLDAP Implementation

Jong Hyuk Choi IBM Research Kurt Zeilenga OpenLDAP Project

Agenda

- Directory Replication / Synchronization
 - Replication
 - Synchronization
 - OpenLDAP Slurpd
- LDAP Content Synchronization Protocol
 - Why not LCUP?
 - Basic Protocol Description
 - Optimized Protocol for Traffic Reduction
- SyncRepl : A New Replication Engine
 - Sync-based Replication Engine Design
 - Client-based Replication Engine Design
- Target Applications
- Summary

Directory Replication

- Replication for High Availability, Performance, Security, Locality ...
- When the directory is updated in a replicated setup, replicas need to be synchronized to each other to provide a single directory image

Partition : unit of replication
 Replica : copy of a partition

- Master-slave vs. Multi-master
 - -Distributed directories via referral: referral chasing or chaining
 - -Separate masters for different roles
- Partial vs. Whole replication
- Replication topology

Directory Synchronization

- Keeping multiple directories up-to-date with each other
- Stateful vs. Stateless
 - Stateful: synchronization action is based on replica status
 - Stateless: provider assumes the replica status and synchronize accordingly
- State-based vs. History-based
 - State-based : synchronization action is determined based on the current replica status
 - History-based: history lookup is required for synchronization
- Incremental vs. Full Reload
 - Incremental: only changes made after last sync be transmitted
 - Full Reload : requires full reloads per every (or most) sync
- Push vs. Pull : provider-initiated or consumer-initiated
- Polling vs. Listening : periodic sync or event-driven sync
- Unit of synchronization : Entry-level vs. Attribute-level

Slurpd

- Slurpd : standalone LDAP Update Replication Daemon
 - Master-slave
 - Multi-master for one level replication only without predefined URP (Update Reconciliation Protocol)
 - Stateless, History (replog) based, Push, Incremental synchronization
- Example
 - 1. Initial replication (db copy or ldif load) with master read-only
 - Promote master to read-write
 - 3. Incremental synchronization

LDAP Content Synchronization Protocol

- Stateful : cookie represents current replica status
- State-based : does not mandate history store
- Incremental : only changes after last sync are to be transmitted
- Pull : clients initiate synchronization sessions
- Polling & Listening : refreshOnly & refreshAndPersist
- Partial replication : supports arbitrary search specification
- Eventual consistency
- Unit of synchronization : entry
- Does not require predefined synchronization arrangement per-consumer information history

LDAP Sync : Example

Why not LCUP?

- LCUP (LDAP Client Update Protocol)
 - Sends {updates + deletes}
 - Requires history information for reasonably efficient implementation
 - OpenLDAP doesn't maintain history information (tombstone, changelog ...)

Basic Protocol: Refresh

Basic Protocol: Refresh & Persist

Protocol Optimization (Present Phase + Delete Phase)

- Delete mode: requires full reload if replica state is out of history
- Present mode: requires present entry transmission even if replica is within history
- Present + Delete: sends deletes for the scope-outs covered by the history store sends presents for those not covered by the history

Send Entries

Done with Cookie

Send "Changed" Entries Send "History Cookie" Send "Present" Messages Send "Delete" Messages

Done with "Replica Cookie"

Replication Engine Design

Periodic execution of refresh tasks :

scheduling facility in slapd_daemon_task()
simple runqueue implementation

Storage of sync cookie in consumer :

Subentry: syncConsumerSubentry

Operational attributes :

Regenerated at replica as needed

structuralObjectClass :

generate on-the-fly in slap_mods_opattrs()

UUID, CSN based implementation

UUID : stable entry identifier

CSN as cookies

Configuration example

test017: refreshOnly, test018: refreshAndPersist, test020: cascading

Replication Engine Design: Glueing

- Glues : Naming entries for holes in DIT
 - Delivery can be out of hierarchy order after several rounds of updates
 - Partial replication
- Glue construction
 - syncrepl_add_glue()
 - Find first non-glue superior object
 - Create glues from down to the entry

consumer.company.com

- Schema checking bypass for glues (rdn attribute requirement)
- Glueing for LDAP Proxy Cache

Client-based Replication Engine

- Heterogeneous replication
 - SyncRepl engine needs to talk to generic LDAP servers
- Synchronization without LDAP Content Synchronization
 - 1. Search for (&(original filter)) asking only UUID and CSN attributes Present phase
 - 2. Delete replica entries not returned by (1)
 - 3. Search for (&(original filter)(entryCSN>cookie)(entryCSN=<maxCSN(1))
 asking replicated attributes + UUID + CSN Update phase
 - Replica is synchronized to the point maxCSN(1)
- Comparison with SyncRepl with LDAP Content Synchronization
 - Only supports polling
 - Extra requests / replies
 - Extra traffic (only present mode)

14

Target Applications

- Slurpd replacement
 - OpenLDAP to OpenLDAP replication based on LDAP content sync protocol
 - Heterogeneous replication by using client-based replication engine
- LDAP Proxy Cache synchronization
 - Replace current TTL based scheme
 - Replication and Caching
- IBM Directory Integrator Connector
 - Heterogeneous Directory Synchronization : Meta-directory

Summary

- LDAP Content Sync Protocol
 - draft-zeilenga-ldup-sync-xx.txt
- OpenLDAP SyncRepl Engine
 - servers/slapd/syncrepl.c
 - tests/data/slapd-syncrepl-master.conf
 - slapd-syncrepl-slave-xxxxx.conf
- Any Questions ?