OpenLDAP Proxy Cache Development

Apurva Kumar
IBM India Research Lab




Agenda

LDAP query caching.

LDAP proxy cache.

Proxy cache architecture.
Implementation issues.
LDAPsync and proxy caching.

Future development plans.




LDAP query caching

* Problems with large enterprise directories
Scalability

Large delays for remote sites.
= Alternatives
Partial replication.
Partitioning.
= Advantages of query caching
Caches queries rather than naming contexts.
Answers repeat and contained queries.

Utilizes locality of reference.




LDAP query cache operation

Caches entries and metadata corresponding to search requests.

Query containment. Determines if an incoming query is semantically
contained in cached queries.

Answers contained queries locally.

Contacts backend for queries not contained.




Template based query containment

General query containment: A query filter F1 is contained in another
filter F2 iff (F1 & 'F2) is inconsistent.

Template: Prototype for generating query filters, e.g. (sh=),
(&(sn=)(givenName=)).

Typical applications use only a few templates.

Template based containment: Cache queries belonging to specified
templates.

Simplifies containment problem
Use only those templates which can possibly answer the query.

Same template: Comparisons of corresponding simple filters.
Cross template: Predetermined conditions.




LDAP proxy cache

= An LDAP proxy extended for query caching.

= Why implement query caching inside directory servers ?
Query containment requires syntaxes and matching rules.

Applications need not change.
Common functionality (search,add etc.) with directory servers.

Can be integrated with synchronization mechanisms like LDAPsync.




Proxy cache architecture

LDAP client

QC: Query Containment engine
CM: cache manager

[

I
|

Proxy cache

Cache backend

&
<«

backend server




OpenLDAP proxy cache: Algorithms

Cacheability: what to cache ?
Incoming queries

Queries belonging to specifed templates.

Queries satisfying a size limit.
Cache replacement: Removes LRU query.
Prefetching: Currently not implemented.

Consistency: TTL based weak consistency.




Implementation issues

= |deally any backend should be able to act as a cache store.

" |ssues:
Sparse subtree problem.

Adding entries without parent.
Removing entries without children.
Searching without search base in the cache.

Disabling schema check.

Disabling access control for cache operations.

= Current solution is to disable checks when a caching operation is
being performed.

= Alternatives: glue entries, rootDN, backend flags.




LDAPsync and proxy cache

= LDAPsync can be used to support
Polling based updates.

Strong consistency.

= Replication + caching
Replicated filters capture static referential locality.
Cached filters capture dynamic referential locality.
High hit ratio.

» |Interaction between proxy cache and LDAPsync
LDAPsync provides consistency for cached filters.

Proxy cache allows answering of queries from replicated filters.




Design changes

LDAP client

o

Proxy cache

backend server




Future Work

= Combining LDAPsync and proxy cache.

= Using cache specific schema for representing queries and
implementing containment.

(draft-apurva-ldap-query-containment-01.txt)

= Implementation of prefetching algorithms.




